Latviešu Krievu Angļu Vācu Franču
Statuss(Aktīvs) Izdruka Arhīvs(0) Studiju plāns Vecais plāns Kursu katalogs Vēsture

Course title Mathematics III
Course code Mate1038
Credit points 2
ECTS creditpoints 3
Total Hours in Course 80
Number of hours for lectures 16
Number of hours for seminars and practical classes 16
Independent study hours 48
Date of course confirmation 06/09/2017
Responsible Unit Department of Mathematics
 
Course developers
Dr. paed., prof. Anda Zeidmane

Prior knowledge
Mate1003, Mathematics I
Mate1037, Mathematics II
Course abstract
Studying the course, students acquire the mathematical knowledge and skills needed for the further study of special subjects. The third part of the course includes 1st and 2nd order differential equations, and its solving methods, numerical series and series of function and their application.
Learning outcomes and their assessment
• the knowledge of first and second order ordinary differential equations and its solving methods, numerical series and series of function;
• the skills solve first and second order ordinary differential equations, use the series to evaluate function, integrals and differential equations. • competence: of mathematical thinking, of handle symbols and formal mathematics language, of mathematical problem formulating and solving, of reasoning, of modeling, of aids and tools and of communication.
Compulsory reading
1. Volodko I. Augstākā matemātika. II daļa. Rīga: Zvaigzne ABC, 2007. 294 lpp.
2. Bula I., Buls J. Matemātiskā analīze ar ģeometrijas un algebras elementiem II daļa.. Rīga: Zvaigzne ABC, 2004. 192 lpp.
3. Kronbergs E., Rivža P., Bože Dz. Augstākā matemātika. I daļa. Rīga: Zvaigzne, 1988. 534 lpp. 4. Šteiners K. Augstākā matemātika. IV daļa. Rīga: Zvaigzne ABC, 1999. 167 lpp.
Further reading
1. Cernajeva S., Vintere A. Mācību līdzeklis augstākās matemātikas pamatu apguvei. Rīga-Jelgava, 2016. 198 lpp.
2. Siliņa B., Šteiners K. Rokasgrāmata matemātikā. Rīga: Zvaigzne ABC, 2006. 367 lpp. 3. Lewin J. An Interactive Introduction to Mathematical Analysis. UK: Cambridge Umiversity press. 492 p.
Periodicals and other sources
1. Zeidmane A. Didaktiskie materiāli augstākajā matemātikā. Pamatjēdzieni, pamatlikumi, pamatsakarības. Kopsavilkums. LLU, Jelgava. 2010. 39 lpp- e-materiāli 2. Uzdevumu krājums augstākajā matemātikā. Dz.Bože, L.Biezā, B.Siliņa, A.Strence. Rīga: Zvaigzne, 2001. 332 lpp. 3. Konev V. Linear algebra, Vector algebra and analytical geometry. Tomsk Polytechnic University, 2009. 114 p. [Tiešsaiste] [skatīts 02.11.2017.]. Pieejams: http://portal.tpu.ru:7777/SHARED/k/KONVAL/Textbooks/Tab1/Konev-Linear_Algebra_Vector_Algebra_and_Analytical_Geome.pdf