Course code VidZ5031

Credit points 7.50

Scientific Actualities

Total Hours in Course200

Number of hours for lectures54

Number of hours for seminars and practical classes6

Independent study hours140

Date of course confirmation16.03.2022

Responsible UnitInstutute of Landscape Architecture and Environmental Engineering

Course developer

author Ainavu arhitektūras un vides inženierijas institūts

Artūrs Veinbergs

Ph.D.

Replaced course

VidZM001 [GVIDM001] Scientific Actualities

Course abstract

The study course aims to provide an overview of actual research subjects, encourage students to investigate their interests, choose an appropriate specialization of the study programme, and define the Master's thesis topic.
During the course, the students are introduced to the structure of the Master's study programme "Environmental, Water and Land Engineering" and directions available for the individual specialization. During the course, students meet the lecturers that could potentially supervise their Master's thesis. Each of the lecturers introduces themselves and gives an overview of their research interests, scientific activities they have been involved in, results obtained, and the issues demanding the research in the future. During the implementation of the course, students should choose the supervisor of the Master's thesis. In coordination with the supervisor, students should define the topic, aim, tasks, and initial hypothesis of the Master's theses. Finally, students should choose a specialization in which they want to continue their Master's studies.

Learning outcomes and their assessment

The student will learn about the significance of scientific activities and practical issues related to the field of Master's program – practical tasks.
The student will be competent to raise topical research questions and define the research topic - discussion, practical work.
The student will acquire skills to define an aim and tasks corresponding to the research topic – practical work, discussion.

Course Content(Calendar)

1. Introduction, the content of the study course and materials to be used (1h);
2. General description of the Master's study programme and the specializations students should choose to meet their individual interests (1h);
3. Getting acquainted with the lecturers (potential supervisors of Master's theses) from the Department of Land Management and Geodesy about current ongoing scientific actions, scientific topics investigated or planned to, issues to be investigated and solved in the future (24 h);
4. Getting acquainted with the lecturers (potential supervisors of Master's theses) from the Department of Environmental Engineering and Water Management, about current ongoing scientific actions, scientific topics investigated or planned to, issues to be investigated and solved in the future (24 h);
5. Getting acquainted with the lecturers (potential supervisors of Master's theses) from the Department of Architecture and Construction, about current ongoing scientific actions, scientific topics investigated or planned to, issues to be investigated and solved in the future (4 h);
6. Practical work for defining the topic and aim of Master's thesis (2h);
7. Practical work for determining the research tasks and potential conclusions of the Master's thesis (2h);
8. Practical work for preparing the assignment of the Master's thesis. Description of data potentially used in the Master's thesis (2h).

Requirements for awarding credit points

Formal test with a grade; The student should develop and successfully defend practical tasks. The student should prepare an assignment that defines the topic and gives an overview of the structure of the Master's theses. The assignment should be approved by the supervisor of the master thesis and the director of the Master's programme.

Description of the organization and tasks of students’ independent work

The independent work aims: 1) to gain an in-depth understanding of scientific and practical issues in the fields related to the Master's study program; 2) to investigate and define the individual interest and be able to choose the specialization student wants to study further.
The student should keep studying the topics discussed in the classes independently by collecting and analyzing scientific and practical findings. Appropriate scientific and practical literature should be selected and analyzed, the outcomes should be compared, summarized, and individual conclusions should be drawn.
According to the instructions of the leading lecturer of the course, the student must individually structurize and complete the practical tasks started during the classes.

Criteria for Evaluating Learning Outcomes

At the end of the study course, the student receives a grade on the 10-point scale according to practical tasks. The total grade is calculated by summing points received according to:
• consistency between the topic and the aim of the Master's thesis (2p);
• abilities to explain the topicality of the Master's theses (2p);
• the initial hypothesis of the Master's theses (1p);
• interrelation between the aim and the tasks of the Master's theses (3);
• ability to discuss the tasks performed during the course (2p).

Compulsory reading

1. Baltijas jūras vides aizsardzības komisijas (HELCOM) mājas lapa. [Tiešsaiste]. Pieejams: https://helcom.fi/
2. Projekts “Ilgtspējīgo lietus ūdeņu apsaimniekošanas risinājumu izmantošanas metodiskie norādījumi un projektēšanas vadlīnijas”. Zinātniskās literatūras un starptautiskās pieredzes apkopojums. [Tiešsaiste]. CLEANTECH LATVIA. Pieejams: https://cleantechlatvia.com/lv/2022/02/01/zinatniska-literatura/
3. Inovatīvi ģeotelpiskie risinājumi. [Tiešsaiste]. Pieejams: https://www.gim-international.com/
4. "Mikro-g LaCoste absolūtie gravimetri". Mājas lapa. [Tiešsaiste]. Pieejams: http://microglacoste.com/absolutemeters.php)
5. Interreg Centrālbaltijas projekts tīrākai jūrai. Projekta mājaslapa. [Tiešsaiste]. NUTRINFLOW. Pieejams: http://nutrinflow.eu/
6. Pasākumi ūdenī noritošo aiztures procesu veicināšanai Projekta Natural Water Retention Measures (NWRM) mājas lapa. [Tiešsaiste]. Pieejams: http://nwrm.eu/
7. Latvijas mērnieku biedrības mājas lapa. [Tiešsaiste]. Pieejams: http://lmb.lv/
8. Latvijjas zinātnes padome. Mājaslapa, jaunumi. [Tiešsaiste]. Pieejams: https://lzp.gov.lv/jaunumi/
9. Lauku drenēšanas prakses transformācija [Transforming drainage]. Projekta mājas lapa par inovatīvu drenāžas plānošanas un ieviešanas praksi. [Tiešsaiste]. Pieejams: https://transformingdrainage.org/
10. Klimatam draudzīga lauksaimniecība. [Tiešsaiste]. LLU. Pieejams: https://www.llu.lv/lv/klimatam-draudziga-lauksaimnieciba
11. Valsts zemes dienesta mājas lapa. [Tiešsaiste]. Pieejams: https://www.vzd.gov.lv/lv
12. “Waterdrive”. Projekta mājaslapa. [Tiešsaiste]. Pieejams: https://water-drive.eu/

Further reading

1. Lagzdiņš A. Grinberga L. Veinbergs A. Trifane A. (2018) Rokasgrāmata par videi draudzīgu elementu ierīkošanu meliorācijas sistēmās. Jelgava: Jelgavas tipogrāfija Zemgales Plānošanas reģions, 2018. ISBN 978-9934-19-755-0. Ir LLU FB 54 eks. Pieejams: https://zemniekusaeima.lv/wp-content/uploads/2019/03/Gr%C4%81mata_Par-videi-draudz%C4%ABgu-elementu-ier%C4%ABko%C5%A1anu-melior%C4%81cijas-sist%C4%93m%C4%81s.pdf
2. Urtāne L., Urtāns A.V. Videi draudzīga meliorācija. 1. daļa: Ūdenstecēm raksturīgo bioloģisko funkciju nodrošināšana ūdensnotekās. Vadlīnijas bioloģiskās daudzveidības uzturēšanai ūdensnotekās un meliorācijas grāvjos un plūdu risku mazināšanai. [tiešsaiste]. Rīga, 2018. [Skatīts 30.03.2022.]. Pieejams: https://drive.google.com/file/d/1GwOKxmRYhXvrVzWJaUu-OdG77riwZEke/view
3. Urtāne L. Urtāns A.V. Videi draudzīga meliorācija. 2. daļa: Ūdensnoteku apsaimniekošana, to bioloģisko funkciju nodrošināšanai. Vadlīnijas bioloģiskās daudzveidības uzturēšanai ūdensnotekās un meliorācijas grāvjos un plūdu risku mazināšanai. Rīga: 2018. [tiešsaiste] [skatīts 30.03.2022.]. Pieejams: https://drive.google.com/file/d/1FsuYy
MoWZ6Gi_rXaGhnMJiOWRPrQ_VIT/view
4. Carolus J. F., Bartosova A., Olsen S. B., Jomaa S., Veinbergs A., Zilāns A., … Tonderski K. Nutrient mitigation under the impact of climate and land-use changes: A hydro- economic approach to participatory catchment management. Journal of Environmental Management, , No. 271, 2020, p. 1-13. Pieejams: https://doi.org/10.1016/j.jenvman.2020.110976
5. Carstensen M. V., Hashemi F., Hoffmann C. C., Zak D., Audet J., Kronvang B. Efficiency of mitigation measures targeting nutrient losses from agricultural drainage systems: A review. Ambio, No. 64, 2020, p. 1-18. [tiešsaiste] [skatīts 30.03.2022.]. Helloo (The Netherlands): The SCAPE Advisory Board; 2006. Pieejams: https://doi.org/10.1007/s13280-020-01345-5
6. Imeson A., Arnoldussen A., De la Rosa D., Montanaralla L., Dorren L., Curfs M., Arnalds O., van Asselen S. Soil Conservation and Protection in Europe - The Way Ahead. The SCAPE Advisory Board. 2006. Pieejams: http://publications.jrc.ec.europa.eu/repository/handle/JRC32727
7. Povilaitis A., Rudzianskaite A., Miseviciene S., Gasiunas V., Miseckaite O., Živatkauskiene I. Efficiency of Drainage Practices for Improving Water Quality in Lithuania. American Society of Agricultural and Biological Engineers (ASABE), No. 61(1), 2018, p. 179-196. Pieejams: https://doi.org/10.13031/trans.12271
8. Lennartz B., Janssen M., Tiemeyer B. Effects of Artificial Drainage on Water Regime and Solute Transport at Different Spatial Scales. In: M. K. Shukla (Ed.), Soil hydrology, land use and agriculture: measurement and modelling. Wallingford: CABI, 2011, p. 384-414. Pieejams: https://doi.org/10.1079/9781845937973.0000

Notes

The course is compulsory for academic Master's study programme "Environmental, Water and Land Engineering" full-time studies