Kursa kods Mate1003
Kredītpunkti 4.50
Zinātnes nozareMatemātika
Zinātnes apakšnozareMatemātiskā analīze un funkcionālanalīze
Kopējais stundu skaits kursā120
Lekciju stundu skaits16
Semināru un praktisko darbu stundu skaits32
Studenta patstāvīgā darba stundu skaits72
Kursa apstiprinājuma datums19.10.2022
Atbildīgā struktūrvienībaMatemātikas un fizikas institūts
Dr. math.
Mg. math.
MateB006 [GMATB006] Matemātika I
Studiju kursa mērķis ir matemātiskās domāšanas veicināšana, aplūkojot dažādus matemātikas pielietojumus informācijas tehnoloģijās.
Studiju kursā tiek apgūti lineārās algebras elementi, analītiskā ģeometrija, matemātiskā analīze un vienargumenta funkcijas diferenciālrēķini.
Pēc sekmīgas šī kursa apguves students:
1. Pārzina un spēj pierādīt zināšanas un kritisku izpratni par lineārās algebras, analītiskās ģeometrijas elementiem, funkciju robežu aprēķināšanu un viena argumenta funkciju diferenciālrēķiniem. Pārzina apgūto tēmu pielietojumu praktiskos, ar informācijas tehnoloģijas specialitāti saistītos procesos - kontroldarbi
2. Spēj paradīt atbilstošo jēdzienu un likumību izpratni, izpildīt nepieciešamās matemātiskās darbības un operācijas, veidojot loģisku spriedumu ķēdi un korektu matemātisko valodu – praktiskie darbi
3. Strādājot grupā vai veicot darbu patstāvīgi, spēj pielietot specialitātes problēmsituācijai atbilstošus matemātiskos aprēķinus, veikt aprēķinu starprezultātu un gala rezultātu profesionālu novērtēšanu un interpretāciju – patstāvīgais darbs
1. Determinanti, to aprēķināšana. Lineāru vienādojumu sistēmu aprēķināšana -6h
2. Matricas, darbības ar tām, to pielietojums - 6h
3. Taisnes vienādojums un to pielietojums lineāru procesu pētīšanā – 1h
4. 1. kontroldarbs. Lineārās algebras elementi -1h
5. Vektoru algebra: divu vektoru skalārais un vektoriālais reizinājums, trīs vektoru jauktais reizinājums - 6h
6. Funkcijas robežu aprēķini, nenoteiktības, to novēršana, funkcijas nepārtrauktība un pārtraukuma punktu noteikšana, to pielietojums - 7h
7. 2. kontroldarbs. Vektoru algebra. Funkcijas robežu aprēķini – 1h
8. Viena argumenta funkciju diferenciālrēķini - 13h
9. Viena argumenta funkciju diferenciālrēķinu pielietojums dažādu procesu optimizācijā - 6h
10. 3. kontroldarbs. Viena argumenta funkciju diferenciālrēķini – 1h
Jābūt nokārtotai ieskaitei.
Rakstiski jābūt izpildītiem un ieskaitītiem sekojošiem pastāvīgiem darbiem:
1. patstāvīgais darbs. Lineārā algebra
2. patstāvīgais darbs. Vektoru algebra
3. patstāvīgais darbs. Funkcijas robežas
4. patstāvīgais darbs. Viena argumenta funkciju diferenciālrēķini
Ieskaiti saņem akumulējoši, bez papildu zināšanu pārbaudes, ja apkopojot semestra studiju rezultātus:
1. ir ieskaitīti visi patstāvīgie darbi (visi uzdevumi ir izpildīti pareizi)
2. semestra laikā katra kontroldarba vērtējums ir vismaz 4 balles.
Nesekmīgi uzrakstītu kontroldarbu students var pārrakstīt studiju procesa laikā, mācību spēka norādītājos laikos. Pēdējo kontroldarbu students var pārrakstīt individuālo studiju un pārbaudījumu perioda 1. nedēļā mācību spēka norādītajā laikā.
Neizpildoties akumulējošas ieskaites saņemšanas nosacījumiem, students individuālo studiju un pārbaudījumu periodā atbild par visām semestrī apgūtām tēmā kopumā rakstiska ieskaites darba veidā.
1. Volodko I. Augstākā matemātika. I daļa. Rīga: Zvaigzne ABC, 2007. – 294 lpp
2. Kronbergs E., Rivža P., Bože Dz. Augstākā matemātika I daļa. Rīga: Zvaigzne, 1988. – 534 lpp.
3. Bula I., Buls J. Matemātiskā analīze ar ģeometrijas un algebras elementiem I daļa.. Rīga: Zvaigzne ABC, 2003. 256 lpp.
4. Stewart J. Calculus. Bellmont CA: Brooks/Cole, Cengage Learning, 2012. 146 p.
5. Bird J.O. Engineering Mathematics. London; New York:Bellmont Routledge/Taylor & Francis Group, 2017. 709 p.
1. Šteiners K. Augstākā matemātika. I, II, III daļa. Rīga: Zvaigzne ABC, 1997. - 96 lpp.,1998. - 116 lpp., 1998. - 192 lpp.
2. Stroud K.A. Engineering Mathematics. South Norwalk, CT: Industrial Press, 2013. 1155 p.
3. Uzdevumu krājums augstākajā matemātikā. / Dz.Bože, L.Biezā, B.Siliņa, A.Strence. Rīga: Zvaigzne, 2001. 332 lpp.
Obligāts kurss akadēmiskās izglītības (bakalaura) studiju programmā „Datorvadība un datorzinātnes” un profesionālās augstākās izglītības bakalaura studiju programmā „Informācijas tehnoloģijas ilgtspējīgai attīstībai”.