Kurstitel | |
Kurs-Code | InfT5057 |
Kreditpunkte (ECTS) | 4.5 |
Stundenzahl insgesamt (im Auditorium) | 121.5 |
Vorlesungen (Stundenzahl) | 12 |
Stundenzahl fŅr Seminare und praktische Arbeitsaufträge | 24 |
Selbststandige Arbeit des Studenten (Stunden) | 84 |
Bestätigt am (Datum) | 19/01/2022 |
Kurs ausgearbeitet von (Lehrkraft) | |
, Līga Paura |
|
6979@@Priekšzināšanas Kursam priekšzināšanas nav nepieciešamas |
|
Ersetzte/r Kurs/e | |
InfTM002 [GINTM002] |
|
Zur einfŅhrenden LektŅre empfohlen | |
1.Kirk A. Data visualisation: a handbook for data driven design. Los Angeles: SAGE, 2019. 312 p.
2. Corr L., Stagnitto J. Agile Data Warehouse Design: collaborative dimensional modeling, from Whiteboard to Star Schema. UK: Decision Press, 2014. 304 p. 3.Arhipova I., Balina S. Statistika ekonomikā un biznesā: risinājumi ar SPSS un MS Excel: mācību līdzeklis. Rīga: Datorzinību centrs, 2006. 359 lpp. 4.Kabacoff R. I. R in action: data analysis and graphics with R. Second edition. Shelter Island, NY: Manning, 2015. 579 p. |
|
Weiterfuhrende Literatur | |
1.Data science & big data analytics: discovering, analyzing, visualizing and presenting data. EMC Education Services. Indianapolis, IN: John Wiley and Sons, 2015. 410 p.
2.Advanced Analytics with Power BI: Microsoft. Pieejams: https://www.arbelatech.com/insights/white-papers/advanced-analytics-with-power-bi 3.Gujarati D. N. Basic econometrics. 3rd ed. New York [etc.]: McGraw-Hill, Inc., 1995. 838 p. |
|
Zur LektŅre vorgeschlagene Zeitschriften | |
1.European Journal of Management and Business Economics: ISSN 2444-8451 Elsevier data base 2.Journal of Data Analysis and Information Processing: ISSN Online: 2327-7203. Pieejams: www.scirp.org/journal/jdaip |