Course title | Mathematical Statistics I |
Course code | Mate2007 |
Credit points (ECTS) | 2.25 |
Total Hours in Course | 60.75 |
Number of hours for lectures | 16 |
Number of hours for laboratory classes | 8 |
Date of course confirmation | 19/10/2011 |
Responsible Unit | Institute of Computer Systems and Data Science |
Course developers | |
Dr. sc.ing., asoc. prof. Laima Bērziņa |
|
There is no prerequisite knowledge required for this course | |
Course abstract | |
Students acquire understanding of statistical methods importance to make accurate judgments and logical conclusion in the scientific work. The course explores collection, analysis, presentation and interpretation of environmental data for research, policy and regulation. Students acquire skills to use mathematical statistics methods for comparison of means. | |
Learning outcomes and their assessment | |
Knowledge and understanding of the characteristics of the data classification, basic statistics and most used data analysis methods for comparing means with the challenge to engineering sciences; skills to use basic statistical methods for research processes and for scientific work writing; competence to analyze and systematize the data analysis results and use them in scientific work. | |
Compulsory reading | |
1. Arhipova I., Bāliņa S. Statistika ekonomikā un biznesā. Rīga: Datorzinību Centrs, 2006. 364 lpp.
2. Smotrovs J. Varbūtību teorija un matemātiskā statistika II. Rīga: Zvaigzne ABC, 2007. 136 lpp. 3. Grīnglazs L., Kopitovs J. Matemātiskā statistika: ar datoru lietojuma paraugiem uzdevumu risināšanai. Rīga: Rīgas Starptautiskās ekonomikas un biznesa administrācijas augstskola, 2003. 310 lpp. 4. Krastiņš O. Ciemiņa I. Statistika. Rīga: LR Centrālā statistikas pārvalde, 2003. 267 lpp. |
|
Further reading | |
1. Kottegoda, N.T. Applied Statistics for Civil and Environmental Engineers. Oxford ; Malden, MA: Blackwell Publishing, 2008. 718 p. 2. Krastiņš O. Ciemiņa I. Statistika. Rīga: LR Centrālā statistikas pārvalde, 2003. 267 lpp. |