Course title | Mechatronics I |
Course code | MašZ3027 |
Credit points (ECTS) | 2.25 |
Total Hours in Course | 60.75 |
Number of hours for lectures | 16 |
Number of hours for seminars and practical classes | 8 |
Independent study hours | 36 |
Date of course confirmation | 07/02/2017 |
Responsible Unit | Institute of Mechanics and Design |
Course developers | |
Dr. sc. ing., prof. Aivars Kaķītis |
|
There is no prerequisite knowledge required for this course | |
Replaced course | |
MmehB018 [GMMEB018] Mechatronics I |
|
Course abstract | |
The aim of the study course is to gain an understanding of the principles of mechatronics, a systemic approach to the design and maintenance of mechatronic systems. Students learn the structure, dynamical properties and transmission functions of mechatronic systems. Students learn the principles of sensor operation and their use for measuring various physical quantities and controlling industrial process automation. Students learn the basics of electronic devices and programmable logic controllers programming. | |
Learning outcomes and their assessment | |
Knowledge - students understands the working principles of mechatronic systems. Gain in-depth knowledge of proportional hydraulic drive, electro-pneumatics and sensor applications, electronics, and PLC applications. The acquired knowledge serves as a basis for working with mechatronic systems. Knowledge is evaluated in tests and laboratory works.
Skills - students are able to use the acquired knowledge creatively in designing and servicing mechatronic systems. Able to perform system diagnostics and troubleshooting. Assessment - execution of laboratory work. Competence - students are able to use the acquired knowledge creatively in the evaluation and design of the operation of mechatronic systems. Students are able to justify their decisions and integrate the knowledge gained in this and other study courses with work with complex mechatronic systems. Competences is evaluated in tests and laboratory works. |
|
Course Content(Calendar) | |
1. Introduction to mechatronics, its development history and prerequisites - 2h.
2. Basic principles of systems theory. System definition, parameters and properties. Principles of systemic thinking - 2h. 3. Static and dynamic systems, their parameters and characteristics - 2h. 4. Test on introductory part of mechatronics, systems and systems dynamics. 5. Sensors for automation. Physical principles of sensor operation - 2h. 6. Proximity Sensors, Types and Uses - 2h (Practical work). 7. Test on Proximity sensors. 8. Applied Electronics. Transistors and their characteristics - 2h. 9. Transistor Operation Mode Calculations Based on Their Characteristics - 2h (Practical Work). 10. Test on Transistor Operation Mode Calculations. 11. Semiconductor Switches and their usage - 2h. 12. Operating principles of amplifiers. Operational and instrumental amplifiers - 2h. 13. Test on calculation of amplifier circuits. 14. Automatic control systems, types and basic principles – 2h. 15. PLC programming principles - 4h (Practical Work). |
|
Requirements for awarding credit points | |
The course ends with a test. In order to pass the Test, the tests must be successfully written. | |
Description of the organization and tasks of students’ independent work | |
During the independent work the students acquire in-depth the topics discussed in the lectures, carry out the necessary calculations for practical tasks and laboratory work. | |
Criteria for Evaluating Learning Outcomes | |
The student successfully writes a test if he / she has correctly formulated the answers to the questions and performed the necessary calculations. | |
Compulsory reading | |
1. Janschek K. Mechatronic systems design: methods, models, concepts. Heidelberg: Springer, 2012. 805 p.
2. Boukas El-Kébir, AL-Sunni Fouad M. Mechatronic systems: analysis, design and implementation. Berlin: Springer, 2011. 501 p. 3. Kaķītis A., Galiņš A. Leščevics P. Sensori un mērīšanas sistēmas. Jelgava: LLU, 2008. 396 lpp. |
|
Further reading | |
1. Dynamic systems. Modeling, analysis and simulation. Trondheim: Tapir academic press, 2004. 213 p. 2. Proporcionālā hidrauliskā piedziņa. A. Kaķītis, A. Kirka, A. Galiņš, Ē. Kronbergs, R. Puronas, [B.v.: b.i.] 2001. 121 lpp. |
|
Periodicals and other sources | |
Lekcijas un e-studiju materiāli | |
Notes | |
The study course is included in the Compulsory part of the Bachelor’s study program “Machine Design and Manufacturing”. 1st study year 2nd semester. |