Latviešu Krievu Angļu Vācu Franču
Statuss(Neaktīvs) Izdruka Arhīvs(0) Studiju plāns Vecais plāns Kursu katalogs Vēsture

Course title Multivariate Biodata Analysis
Course code Biol6005
Credit points (ECTS) 4.5
Total Hours in Course 121.5
Number of hours for lectures 24
Number of hours for laboratory classes 24
Date of course confirmation 18/01/2012
Responsible Unit Institute of Computer Systems and Data Science
 
Course developers
Dr. agr., prof. Līga Paura

There is no prerequisite knowledge required for this course
 
Course abstract
The aim of this course is to provide students with multivariate statistical methods, whereas most software in biology and agricultural science are based on statistical models. Statistical methods will be illustrated with biology and agriculture data examples. The course subjects are analytics methods of data classification and its using for data analysis.
Learning outcomes and their assessment
• Knowledge depth knowledge and critical understanding about parametric and nonparametric data analysis methods; choose and apply methods according to research task;
• skills able to discuss about principles of choice the methods and their application and implementation of the specific problem at study; to use R and SPSS software for data analysis; • competence to realize data analysis in master work by using a data processing application software; to interpret the results and draw conclusions: to base decisions and to analyze them.
Compulsory reading
1. Dalgaard P. Introductory statistics with R. New York [etc.]: Springer, 2002. 267 p.
2. Engineering statistics handbook [tiešsaiste]. Pieejams:. http://www.itl.nist.gov/div898/handbook/index.htm [Skatīts 18.janvārī 2012.]
3. Krastiņš O., Ciemiņa I. Statistika: mācību grāmata. Rīga: LR Centrālā statistikas pārvalde, 2003. 267 lpp. 4. Zar J. H. Biostatistical Analysis. New Jersey: Prentice Hall, 1999. 591 p.
Further reading
1. An Introduction to R [tiešsaiste]. Pieejams: http://cran.r-project.org/doc/manuals/R-intro.html [skatīts 18.janvārī 2012.]
2. Levine D. M., Ramsey P. P., Smitd Smidt R. K. Applied statistics for Engineers and Scientist: Using Microsoft Excel and MINITAB. Upper Saddle River, New Jersey: Prentice Hall, 2001. 671 p. 3. Sprent P., Smeeton N.C. Applied nonparametric statistical methods. Boca Raton, London, New York, Washington D.C.: Chapman Hall/CRC, 2001. 461 p.