Latviešu Krievu Angļu Vācu Franču
Statuss(Aktīvs) Izdruka Arhīvs(0) Studiju plāns Vecais plāns Kursu katalogs Vēsture

Kursa nosaukums Matemātiskā statistika
Kursa kods Ekon6034
Zinātnes nozare Ekonomika un uzņēmējdarbība
Kredītpunkti 2
ECTS kredītpunkti 3
Kopējais stundu skaits kursā 80
Lekciju stundu skaits 12
Semināru un praktisko darbu stundu skaits 12
Studenta patstāvīgā darba stundu skaits 56
Kursa apstiprinājuma datums 04/09/2019
Atbildīgā struktūrvienība Vadības sistēmu katedra
 
Kursa izstrādātājs(-i)
Dr. agr., prof. Līga Paura

Priekšzināšanas
Kursam priekšzināšanas nav nepieciešamas
 
Kursa anotācija
Maģistranti apgūst parametriskās un neparametriskās datu apstrādes metodes, parametrisko un neparametrisko statistisko metožu izvēles pamatprincipus, metožu apgūšanai pielietos reālus piemērus, saistītus ar izlašu apsekojumiem, uzdevumu atrisināšanai izmantos datu statistiskās apstrādes programmas. Kursā iekļautas tēmas: parametriskās un neparametriskās divu saistīto un divu nesaistīto paraugkopu apstrādes metodes, kontingences analīze, vienfaktora korelācijas un regresijas analīze.
Kursa rezultāti un to vērtēšana
Zināšanas - spēj parādīt padziļinātas zināšanas un izpratni par divu kopu parametriskām un neparametriskām datu apstrādes metodēm, to izvēles pamatprincipiem saskarsmē ar izvirzītajiem pētījuma uzdevumiem (izpildīti praktiskie darbi, divi kontroldarbi, teorijas tests);
Prasmes patstāvīgi izmantot teoriju un izvēlēties no parametrisko un neparametrisko datu apstrādes metožu klāsta metodes, lai veiktu pētniecisku darbību. Spēj argumentēti izskaidrot un diskutēt par metožu izvēles principiem, to pielietošanu un realizēšanu konkrētās problemātikas pētījumam (izpildīti prakstiskie darbi, divi patstāvīgie darbi, divi kontroldarbi);
Kompetences veikt maģistra darbā datu apstrādi, izmantojot datu apstrādes lietojumprogrammatūru, interpretēt iegūtos rezultātus, formulēt secinājumus un saistīt tos ar tautsaimniecības nozari, pamatot lēmumus un veikt to analīzi (nokārtots teorijas tests, izstrādāti divi patstāvīgie darbi).
Kursa saturs(kalendārs)
1.Ievads statistikā. Datu klasifikācija. Datu grafiskā attēlošana [L 1h,P 1h].
2.Aprakstoša statistika - kvantitatīvās pazīmes[L 1h,P 1h].
3.Hipotēžu pārbaude[L 1h].
4.F- tests divu paraugkopu dispersiju salīdzināšanai. t- tests divu neatkarīgu paraugkopu vidējo salīdzināšanai[L 1h,P 1h].
5.Man Vitneja tests divu neatkarīgu paraugkopu salīdzināšanai[L 1h,P 1h].
6.t- tests divu savstarpēji atkarīgu paraugkopu vidējo salīdzināšanai[L 1h,P 1h].
7.Vilkoksona tests divu savstarpēji atkarīgu paraugkopu salīdzināšanai[L 1h,P 1h].
1.kontroldarbs: aprakstošā statistika, divu paraugkopu analīzes metodes.
8.Brīvas pieejas un on-line rīki datu statistiskajai apstrādei. Kontingences tabulas[L 0.5h,P 1h].
9.Kontingences analīzē. Hipotēžu pārbaude[L 0.5h,P 0.5h].
10.Hī2 kritērijs kā statistiskās neatkarības tests: 2x2 kontingences tabula[L 0.5h,P 0.5h].
11.Fišera tests: 2x2 kontingences tabula[L 0.5h,P 0.5h].
12.Hī2 kritērijs kā statistiskās neatkarības tests: rxc kontingences tabula[L 1h,P 1h].
13.Korelācijas analīze. Pīrsona korelācijas koeficients. Hipotēžu pārbaude[L 0.5h,P 0.5h].
14.Korelācijas analīze. Spīrmena korelācijas koeficients. Hipotēžu pārbaude[L 0.5h,P 1h].
15.Vienfaktora lineārais regresijas modelis. Hipotēžu pārbaude. 2.kontroldarbs: kontingences analīze, korelācijas un regresijas analīze[L 1h,P 1h].
Prasības kredītpunktu iegūšanai
Nokārtoti divi kontroldarbi un teorijas tests. Izstrādāti patstāvīgie darbi. Kumulatīvā vērtējuma iegūšanai kontroldarbus var rakstīt tikai norādītā laikā. Nokavēto nodarbību atstrādāšana notiek saskaņā ar LLU Studiju nolikumu.
Studējošo patstāvīgo darbu organizācijas un uzdevumu raksturojums
1. patstāvīgais darbs: datu apstrādei izmanto parametriskās vai neparametriskās divu paraugkopu analīzes metodes, pamato metodes izvēli (iesniedz e-studijās). 2. patstāvīgais darbs: datu apstrādei izmanto kontingences, korelācijas un vienfaktora regresijas analīzi (iesniedz e-studijās).
Studiju rezultātu vērtēšanas kritēriji
Ieskaites vērtējums ir atkarīgs no semestra kumulatīvā vērtējuma: kontroldarbu vērtējums (1.kontroldarbs – 40%; 2.kontroldarbs – 40%) un teorijas testa vērtējums (20%).
Pamatliteratūra
1. Arhipova I., Balina S. Statistika ekonomikā un biznesā. Risinājumi ar SPSS un MS Excel: mācību līdzeklis. Rīga: Datorzinību centrs, 2006. 362 lpp. 2. Goša Z. Statistika: mācību grāmata. Rīga: LU, 2003. 334 lpp.
3. Paura L., Arhipova I. Neparametriskās metodes SPSS datorprogramma: mācību līdzeklis. Jelgava: LLKC, 2002. 148 lpp.
4. Krastiņš O., Ciemiņa I. Statistika: mācību grāmata. Rīga: LR Centrālā statistikas pārvalde, 2003. 267 lpp. 5. Brandt S. Data analysis: statistical and computational methods for scientists and engineers. 4th edition. Cham: Springer, 2014. 523 P.
Papildliteratūra
1. Kabacoff R. I. R in action: data analysis and graphics with R. Second edition. Shelter Island, NY: Manning, 2015. 579 P. 2. Anderson D.R., Sweeney D.J., Williams T.A., Freeman J., Shoesmith E. Statistics for business and economics Fourth edition. Hampshire: Cengage Learning, 2017. 615 P.
Piezīmes
Obligātais studiju kurss ESAF Profesionālā maģistra studiju programma "Uzņēmējdarbības vadība".