Code du cours InfTM002

Crédits 4

La quantité totale d'heures en classe120

Nombre de conferences10

Nombre de travaux pratiques et des séminaires22

Nombre des travaux du laboratoire0

La quantitē d'heures de travail autonome d'un ētudiant76

Date de l'approbation du cours13.12.2023

Auteur du cours

author

Līga Paura

Le cours remplacé

InfT5057 [GINT5058]

Manuels

1. Kirk A. Data visualisation: a handbook for data driven design. Los Angeles: SAGE, 2019. 312 p.
2. Corr L., Stagnitto J. Agile Data Warehouse Design: collaborative dimensional modeling, from Whiteboard to Star Schema. UK: Decision Press, 2014. 304 p.
3. Arhipova I., Balina S. Statistika ekonomikā un biznesā: risinājumi ar SPSS un MS Excel: mācību līdzeklis. Rīga: Datorzinību centrs, 2006. 359 lpp.
4. Kabacoff R. I. R in action: data analysis and graphics with R. Second edition. Shelter Island, NY: Manning, 2015. 579 p.

Ouvrages supplémentaires

1. Data science & big data analytics: discovering, analyzing, visualizing and presenting data. EMC Education Services. Indianapolis, IN: John Wiley and Sons, 2015. 410 p.
2. Advanced Analytics with Power BI: Microsoft. Pieejams: https://www.arbelatech.com/insights/white-papers/advanced-analytics-with-power-bi
3. Gujarati D. N. Basic econometrics. 3rd ed. New York [etc.]: McGraw-Hill, Inc., 1995. 838 p.

Périodiques et d`autres ressources d`information

1. European Journal of Management and Business Economics: ISSN 2444-8451 Elsevier data base
2. Journal of Data Analysis and Information Processing: ISSN Online: 2327-7203. Pieejams: www.scirp.org/journal/jdaip