Code du cours DatZM001
Crédits 3
La quantité totale d'heures en classe
Nombre de conferences8
Nombre de travaux pratiques et des séminaires16
Nombre des travaux du laboratoire0
La quantitē d'heures de travail autonome d'un ētudiant57
Date de l'approbation du cours04.10.2023
1. Diez F., Bussin M., Lee V. Fundamentals of HR Analytics. Emerald Publishing Limited, 2019, p. 281
2. Edwards M. R., Edwards K. Predictive HR analytics: mastering the HR metric. Kogan Page, 2019, p. 536
3. Fitz-enz J. The new HR analytics: predicting the economic value of your company's human capital investments. New York, AMACOM, 2010, p. 368
4. Winston W. Microsoft Excel 2019 Data Analysis and Business Modeling. Microsoft Press, 2019, p. 880
5. Collie R. Power Pivot and Power BI. Holy Macro! Book, 2016, p. 314
6. Kusleika D., Alexander M. Excel 2019 Power Programming with VBA. Wiley, 2019, p. 784
1. Alvarez F., Stone D., Castano A., Garcia-Izquierdo A. Human Resources Analytics: A systematic Review from a Sustainable Management Approach. Journal of Work and Organizational Psychology 38, 2022, pp. 129-147.
2. Belizon M., Kieran S. Human resources analytics: A legitimacy process. Human Resource Management Journal. 32, 2022.
3. Margherita A. Human resources analytics: A systematization of research topics and directions for future research. Human Resource Management Review, 32, 2021.
4. Alexander M., Kusleika D., Walkenbach J. Excel 2019 Bible. Wiley, 2018, p. 1120
5. Jelen B., Alexander M. Microsoft Excel 2019 Pivot Table Data Crunching. Microsoft Press, 2019, p. 512
1. Peiseniece, L. (2010). Cilvēkresursu vadīšanas novērtēšanas metodes un to pilnveidošanas virzieni Latvijas lielajos uzņēmumos. Promocijas darbs. Rīga: LU.
https://core.ac.uk/download/71754104.pdf
2. Dombrovska, L.R. (2009). Cilvēkresursu kapitāla vadība. Rīga: Zvaigzne ABC.