Course code BūvZB019
Credit points 5
Total Hours in Course120
Number of hours for lectures24
Number of hours for seminars and practical classes32
Number of hours for laboratory classes0
Independent study hours79
Date of course confirmation12.12.2023
Responsible UnitInstitute of Civil Engineering and Wood Processing
Dr. sc. ing.
Dr. sc. ing.
BūvZ2039, Selected Topics in Strength of Materials
BūvZ2048, Basic Theory of Structures
BūvZB018, Structural Analysis I
Fizi2007, Physics I
FiziB010, Physics II
MateB009, Mathematics I
BūvZ3078 [GBUV3078] Structural Analysis II
Conditions for structural composition, model analysis methods of statically undeterminate systems (beams, trusses, frames) are gained. Methods for determination of internal forces in elements of statically indeterminate systems and system displacements, produced by external loads and temperature changes are acquired.
Understanding of essential features of statically determinate and statically indeterminate systems. Skills to put into calculations a Force method for analysis of statically indeterminate systems. Test Nr. 1, Homework Nr. 1.
Skills to put into calculations a Displacement method for analysis of statically indeterminate systems. Test Nr. 2, Homework Nr. 2.
Competence to assess adequacy of results obtained.
Comparison of statically determinate and statically indeterminate systems, degrees of indeterminacy. 4 h.
2. Force Methods compatibility equation system. 2 h.
3. Determination of compatibility equation systems coeficients and unknown parameters. 3 h.
4. Choice of basic systems, symmetric structures as basic systems. 3 h.
5. Statically indeterminate frames. Analysis by means of Force Method. 4 h.
6. Obtaining shear forces from bending moment diagrams. 2 h.
7. Statical and kinematic compatibility tests for internal forces diagrams. 3 h.
8. Analysis of statically indeterminate trusses by means of Force Method. 3 h.
9. Statically indeterminate arches, their analysis by means of Force Method. 2 h.
10. Statically indeterminate structures, subjected to temperature differences and support deflections. Analysis by means of Force Method. 4 h.
11. Deflection methods equation system, determination of coeficients. 4 h.
12. Effectiveness comparison of Force and Deflection Methods for different types of structures. 2 h.
13. Adwanced analysis of symmetric statically indeterminate structures. 3 h.
14. Analysis of statically indeterminate structures by means of numerical approximation methods. 3 h.
15. Finite Element Method’s algorithms for structural analysis. 3 h.
16. Structural analysis software based on Finite Element Method. 3 h.
Credit test will be enrolled, if student know basic definitions of static, and he/she is able to discuss on results of calculations and to verify the results by alternative approach. It is required positive assessment of two classroam tests and two homeworks. The course ends with examination including two calculation tasks in writing and one selected topic from theory (answer orally).
The first homework, 1st test. Analysis of statically indeterminate beam or frame by mean of Force Method.
The second homework, 2nd test. Analysis of statically indeterminate beam or frame by mean of Deflection Method.
Student will have positive assessment of test, if at least 50% of calculation records are correct. The home work will be assessed basing on two criteria: 1) fulfilment of equilibrium conditions between internal and external forces and correct force diagramms; 2) ability to discuss on results of calculations and to verify the results by alternative approach. For each of three examination tasks 0-3 scoring points will be enrolled. Additional point (in case of existing 9 points) if student answer on additional question, not included in current examination tasks.
Bulavs F., Radiņš I. Būvmehānikas ievadkurss. Rīga: RTU izdevniecība, 2010. 250 lpp.
2. Melderis I., Teters G. Būvmehānika: mācību grāmata. Rīga: Zvaigzne, 1977. 560 lpp.
3. Siliņš L. Būvstatika: mācību grāmata. Rīga: Zvaigzne, 1976. 232 lpp.
1. Hulse R., Cain J.A. Structural mechanics: worked examples. R. Hulse, J.A. Cain. Basingstoke: Palgrave Macmillan, 2009. Ir LLU FB 1 eks.
2. Stavridis L. T. Structural systems: behaviour and design. L.T. Stavridis. London: Thomas Telford, 2010. 2 sēj.
3. McKenzie, William M. C. Examples in structural analysis/ William M.C. McKenzie.- 2nd edition. - Boca Raton, FL: CRC Press, 2017., 819 p.
1. Būvmehānika - palīglīdzeklis studentiem [tiešsaiste], [skatīts 10.04.2018.]. Pieejams: www.llu.lv/buvmehanika
2. Būvinženieris: Latvijas Būvinženieru savienības izdevums. Rīga: Latvijas Būvinženieru savienība, 2006- ISSN : 1691-9262
Compulsory Course for the Professional Bachelor’s study programme “Civil Engineering”