Kursa kods Mate1022

Kredītpunkti 3

Matemātika II

Zinātnes nozareMatemātika

Zinātnes apakšnozareMatemātiskā analīze un funkcionālanalīze

Kopējais stundu skaits kursā120

Lekciju stundu skaits18

Semināru un praktisko darbu stundu skaits32

Laboratorijas darbu stundu skaits6

Studenta patstāvīgā darba stundu skaits64

Kursa apstiprinājuma datums20.02.2013

Atbildīgā struktūrvienībaMatemātikas katedra

Kursa izstrādātāji

author asoc. prof.

Svetlana Atslēga

Dr. math.

author lekt.

Ilze Jēgere

Mg. paed.

Kursa anotācija

Kursa otrajā daļā tiek apgūti nenoteiktie, noteiktie un neīstie integrāļi, divargumentu funkcijas. Kursā apskata programmas MathCad iespējas, rēķinot integrāļus un divargumentu funkcijas.

Kursa rezultāti un to vērtēšana

• Zināšanas par nenoteikto, noteikto un neīsto integrāli, divargumentu funkcijām un to lietojumiem;
• prasmes nointegrēt vienkāršākās funkcijas, ar noteiktā integrāļa palīdzību spēj aprēķināt plaknes figūras laukumu, līnijas loka garumu un rotācijas ķermeņa tilpumu un virsmas laukumu, lietot integrālrēķinus fizikā un mehānikā, noteikt divargumentu funkciju parciālos atvasinājumu, sastādīt virsmas pieskarplaknes un normāles vienādojumus, atrast divargumentu funkciju ekstrēmus;
• kompetence: matemātiskās domāšanas, matemātikas zīmju valodas lietošanas, problēmrisināšanas (spēja formulēt un risināt matemātiskās problēmas), spriešanas, modelēšanas (spēja analizēt un veidot matemātiskus modeļus), lietot matemātiskos rīkus (ieskaitot IT), kā arī komunikācijas (spēja komunicēt matemātikā – saprast un iztulkot matemātiskas sakarības vai tekstus).

Kursa saturs(kalendārs)

1 Funkcijas monotonitāte. Funkcijas ekstrēmi. Funkcijas grafika ieliekums un izliekums, pārliekuma punkti.
2 Funkcijas diferenciālis. Primitīvā funkcija un nenoteiktais integrālis. Nenoteiktā integrāļa īpašības.
3 Tiešā integrēšana. Integrēšana ar substitūcijas metodi. Parciālā integrēšana.
4 Racionālu funkciju integrēšana.
5 Trigonometrisku funkciju integrēšana.
6 Iracionālu funkciju integrēšana.
7 Noteiktā integrāļa definīcija un īpašības. Noteiktā integrāļa aprēķināšanas metodes.
8 Noteiktā integrāļa pielietojumi figūras laukuma aprēķināšanā Dekarta un polārajā koordinātu sistēmās.
9 Noteiktā integrāļa pielietojumi līnijas garuma aprēķināšanā.
10 Rotācijas ķermeņa tilpuma un virsmas laukuma aprēķināšana.
11 Neīstie integrāļi, to aprēķināšana.
12 Divargumentu funkcijas: definīcija, parciālie pieaugumi, pilnais pieaugums, attēlošana.
13 Divargumentu funkcijas ekstrēmi.

Prasības kredītpunktu iegūšanai

Jābūt iesniegtiem un aizstāvētiem visiem laboratorijas darbiem, nokārtotam eksāmenam.

Pamatliteratūra

1. Volodko I. Augstākā matemātika. I daļa. Rīga: Zvaigzne ABC, 2007. 294 lpp.
2. Volodko I. Augstākā matemātika. II daļa. Rīga: Zvaigzne ABC, 2007. 294 lpp.
3. Kronbergs E., Rivža P., Bože Dz. Augstākā matemātika. I daļa. Rīga: Zvaigzne, 1988. 534 lpp.
4. Uzdevumu krājums augstākajā matemātikā. / Dz.Bože, L.Biezā, B.Siliņa, A.Strence. Rīga: Zvaigzne, 2001. 332 lpp.

Papildliteratūra

1. Brūvere S., Rukmane V. Mācību līdzeklis augstākajā matemātikā LLU inženierzinātņu specialitāšu studijām. II daļa. Jelgava: LLU, 2011. 108 lpp.
2. Jēgere I., Baumanis A. Uzdevumi patstāvīgam darbam matemātikā. Matemātika I, Matemātika II. Jelgava: LLU, 2000. 51 lpp.
3. Siliņa B., Šteiners K. Rokasgrāmata matemātikā. Rīga: Zvaigzne ABC, 2006. 367 lpp.

Piezīmes

Studiju kurss iekļauts LIF profesionālās augstākās izglītības bakalaura studiju programmas "Būvniecība".